

Calorimeter Specifications

- EMCal: $\sim 18X_0$, $\sim 1\lambda_1$
 - Tungsten powder in epoxy with scintillating fibers embedded
 - Readout using SiPMs
- Inner HCal: ~1λ_ι
 - Stainless steel absorber
 - Scintillating tiles with wavelength shifting fibers
 - Readout with SiPMs
- Magnet: ~1λ₁
- Inner HCal: ~4λ_ι
 - Steel absorber
 - Scintillating tiles with wavelength shifting fibers
 - Readout with SiPMs

HCal Electronics Mounting

Close Up View of HCal/EMCal

Current Conceptual Design

- Mechanical Design of EMCal, HCal and support structures is progressing.
- Design includes
 - Locations of electronics racks
 - On-Detector electronics mounting
 - Cable routing- signal and power
- More details in J. Haggerty's talk

Electronics Team

BNL Physics:

- Eric Mannel: L2 Manager
- Sean Stoll: Optical Sensors
- Steve Boose: Frontend Architecture and Design
- Sal Polizzo: Frontend Layout and Technical Support
- Martin Purschke: DAQ
- Ed Desmond: DAQ
- Frank Toldo: Technical Support
- Rich Ruggiero: Mechanical Design
- Chris Pontieri: Mechanical Design
- Columbia University/Nevis Labs:
 - Cheng-Yi Chi: Backend Architecture and Design
 - Bill Sippach: Design Engineer and Layout
 - Nancy Bishop: Technical Support

Design Philosophy

- Digitize all calorimeter waveforms for subsequent analysis.
- Take advantage of PHENIX expertise
- In order to reduce risk & Cost:
 - No custom ASICs -> off the self components
 - Same optical sensor for EMCal and HCal
 - Similar readout for both EMCal and HCal
 - Same digitizers for both systems
 - Common biasing and low voltage systems
- Minimize On-Detector power/heat load
- Use PHENIX DAQ
 - DCM-II
 - Event Builder
 - Data Logging
 - Monitoring

Design Overview

- SiPM preferred optical sensor:
 - Large gain, ~10⁵
 - Dynamic range: ~10⁴
 - Immune to magnetic fields
- Local amplification and gain stabilization: On Detector
- 2mm Hard Metric cable used to transmit analog signals to digitizers; cross talk measured to 10⁻³ level.
- Digitization nearby (off detector) using 14 bit ADCs at 65 MHz.
- Digitizer boards produce trigger primitives for trigger generation.
- Details in coming talks

- Potential concerns:
 - Temperature dependence
 - Neutron Damage

sPHENIX DAQ Overview

sPHENIX HCal/EMCal Readout

Segregation of EMCal Channels

EMCal

- Channel Count;
 - 96 towers in η (z)
 - 256 towers in φ
 - Total towers: 24576
 - 4 SiPMs per tower, total SiPMs: 98304
 - Total channels: 24576
- Readout both ends (1/2 of η (z) coverage)
 - 48 channels per φ slice per half detector
 - Group 8 φ slices per readout sector,
 348 channels
 - 48 signal cables (8 differential pairs/ cable) per sector
- Power and control from both ends

Segregation of HCal Channels

- HCal (inner and outer)
 - 2 layers, inner/outer
 - 24 towers in η (z)
 - − 64 towers φ
 - Total towers: 3072 (Inner + Outer HCal)
 - 5 SiPMs per tower: 15360 SiPMs
 - Total Channels: 3072
- Readout both ends, (1/2 of η (z) coverage)

 - 6 signal cables per sector
- Power and control from both ends

Overall Schedule

- Three Prototype rounds
 - First 2 rounds are performance tests on the bench.
 - Preproduction prototype includes chain test:
 - Front end "on-detector" analog electronics
 - Back end "off-detector" digital electronics
 - Mounted on preproduction detectors
 - Read out using sPHENIX stand-alone DAQ
- Reviews:
 - Performance reviews of each prototype stage
 - Electrical safety review
 - Production Readiness Review
- Milestones included in WBS schedule

Current R&D Efforts

- FNAL T-1044: Feb 2014
 - Prototype EMCal/HCal modules
 - SiPM optical sensors
 - Prototype EMCal and HCal preamp/ driver circuits
 - PHENIX HBD readout electronics (12 bit ADC @ 60 MHz)
- Next generation preamp/driver circuits under development
 - Ready for testing in coming weeks
 - Tested on next generation prototypes
- First generation digitizers
 - Layout in progress
 - Testing late 2015

Issues and Concerns

- Optical Sensors (Sean Stoll/Steve Boose):
 - Radiation tolerance
 - Temperature dependency
- Cooling:
 - Minimize "On-detector" electronics
 - No liquid cooling required
 - Forced air
- Cable Routing (John Haggerty);
 - Sufficient space Will require close coordination with mechanical design
- Acessablility (John Haggerty):
 - Minimize On-Detector electronics
 - Include access plans in design where possible.

Summary

- Design is maturing but some details still need to be worked out.
 - Have a global conceptual design from sensor to data logging.
 - Based on years of PHENIX experience.
 - Optical Sensors: SiPMs.
 - Preliminary preamp/driver circuit being tested.
 - Digitization system being readied for testing.
 - PHENIX DAQ well understood
- Using same design concepts for EMCal and HCal.
 - Simplifies overall design work
 - Reduces complexity
 - Reduces risk
- Following talks will cover more of the details.

BACKUP/SUPPORT SLIDES-

Crate and Rack Requirements

- 48 Digitizer boards required for HCal
- 4 Digitizer boards per XMIT Group- 12 XMIT Boards
- 6U Crate
 - 1 Crate controller
 - 3 XMIT Groups
 - 1 XMIT Board
 - 4 Digitizer Boards
 - 16 Total modules per Crate (20 slots)
 - 4 slots reserved for trigger modules
- HCal requires 4 total crates (1 per quadrant) for digitizers
- Four additional crates required for voltage/bias distribution.
- 12 DCM-II Fibers
 - 8 DCM-II channels per module
 - 2 DCM-II modules for full HCal

